Machine learning has been used to automatically translate long-lost languages

In 1886, the British archaeologist Arthur Evans came across an ancient stone bearing a curious set of inscriptions in an unknown language. The stone came from the Mediterranean island of Crete, and Evans immediately traveled there to hunt for more evidence. He quickly found numerous stones and tablets bearing similar scripts and dated them from around 1400 BCE.

That made the inscription one of the earliest forms of writing ever discovered. Evans argued that its linear form was clearly derived from rudely scratched line pictures belonging to the infancy of art, thereby establishing its importance in the history of linguistics.

He and others later determined that the stones and tablets were written in two different scripts. The oldest, called Linear A, dates from between 1800 and 1400 BCE, when the island was dominated by the Bronze Age Minoan civilization.

The other script, Linear B, is more recent, appearing only after 1400 BCE, when the island was conquered by Mycenaeans from the Greek mainland.

Evans and others tried for many years to decipher the ancient scripts, but the lost languages resisted all attempts. The problem remained unsolved until 1953, when an amateur linguist named Michael Ventris cracked the code for Linear B.

His solution was built on two decisive breakthroughs. First, Ventris conjectured that many of the repeated words in the Linear B vocabulary were names of places on the island of Crete. That turned out to be correct.

His second breakthrough was to assume that the writing recorded an early form of ancient Greek. That insight immediately allowed him to decipher the rest of the language. In the process, Ventris showed that ancient Greek first appeared in written form many centuries earlier than previously thought.

Ventris’s work was a huge achievement. But the more ancient script, Linear A, has remained one of the great outstanding problems in linguistics to this day.

It’s not hard to imagine that recent advances in machine translation might help. In just a few years, the study of linguistics has been revolutionized by the availability of huge annotated databases, and techniques for getting machines to learn from them. Consequently, machine translation from one language to another has become routine. And although it isn’t perfect, these methods have provided an entirely new way to think about language.

Read more: MIT Technology Review

By |2019-07-01T15:18:53+00:00July 1st, 2019|Language, Machine learning, Translation|0 Comments

About the Author:

Leave A Comment